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Abstract. A general lheary of effmtive Hamiltonians. or spin Uamillonians. is presented 
lhat is based upon lhe lheory of u n i w  UanSfOrmaliON. The general properties of effective 
Hamiltonians are discussed and a representation independent form of penurbation lheory is 
given Ulaf allows effective Hamiltonians to be CONwCled in any panicular case. 

1. Introduction 

In magnetism in general, and in magnetic resonance in particular, much use is made of 
effective Hamiltonians, or spin Hamiltonians. Their efficacy in describing the perhaps 
complicated energy level structure of a group or sub-set of quantum states in terms of 
just a few parameters is well known. It is perhaps because spin Hamiltonian have such 
a direct practical application in summarizing experimental data that they are usually used 
in a somewhat intuitive way without reference to any clearly stated basis of fundamental 
principle. Although quite satisfactory for most practical purposes, intuitive procedures 
can sometimes lead to confusion and misunderstanding and for this reason alone it is 
surprising that otherwise definitive texts, such as that by Abragam and Bleaney (1970). 
do not give any very explicit account of a fundamental general theory underlying the use 
of spin Hamiltonians. 

A notable publication dealing with such a general theory is that of Stevens (1985). 
Unfortunately this work makes use of a perturbation method of Bloch (1958) whose effect is 
to produce effective Hamiltonians that, in third and higher order at least, are not Hermitian. 
Soliverez (1969) has shown how the perturbation method of Bloch can be modified to 
give Hermitian Hamiltonians, but nevertheless this Seems an unnecessarily complicated 
procedure on which to base a general theory of spin Hamiltonians. Here a general theory 
will be developed that guarantees Hermiticity but is based upon more standard quantum 
mechanics, namely the theory of unitary transformations. 

2. General theory 

Out of the whole set of quantum states that a quantum system might possess it  is possible 
that, under some conditions, some physical properties arise entirely from a particular sub- 
set of these stam. Such a condition will occur when only the states in the sub-set have 
any appreciable probability of occupancy. Under such a circumstance it is natural to seek 
to describe the sub-set of states separately from other states. This desirable objective is 
achieved if a representation of the quantum states can be found in which the Hamiltonian of 
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the physical system has no matrix elements connecting states within the sub-set of interest 
to states outside the sub-set. Then the Hamiltonian matrix has a block diagonal form with 
the sub-set of states of interest forming one block and all other states forming a second 
block. This means that there must exist a projection operator P that divides the Hilbert 
space of quantum states into two sub-spaces such that 

f i =  P Q P + ( l -  P)&l -P) (2.la) 

or equivalently 

I n ,  PI = 0. (2.lb) 

The projection operator k can be expressed in terms of the orthonormal basis states 
I&) that define the sub-space of interest as 

(2.2) 

The determination of the basis states in (2.2) is equivalent to finding the unitary 
transformation operator fi(fit = fi-') that establishes a one to one correspondence between 
these states and the orthonormal basis states ]p) of some known standard representation. 
That is, for all 01 in the set of interest 

I$*) = f i l d  (2.3) 

so that I ;  can be expressed as 
..̂  - P = U Poll-' (2.4) 

where Po = C, lpe)(pal is the projection operator for the sub-space defined by the basis 
states of the standard representation that correspond according to (2.3) to the states in the 
sub-space of physical interest. 

Th? unitary transformation operator can be used to transform the Hamiltonian 2 into a 
form Ht $at reduces into two parts with respect to the standard basis states Ip) in the same 
way as H does in (2.10) with respect to the states I$). That is 

GI = f i - l f i f i  = Pofi,Po + (1  - PO)fiI(l - F0) (2.50) 

where the fact that fi, has no matrix elements from the set of standard basis states ]pa) to 
states outside the set can be given an algebraic expression as 

[fit, Po1 = 0. (2.56) 

f ie  = f i tPo in (2.5~) is then the effective Hamiltonian for the set of states defined 
by the projection operator PO. Any eigenfunction of f i e ,  I A )  say, will onlx be a linear 
combination of those standard basis states that belong to the set specified by Po and which 
are presumably well known and of a relatively simple nature. From the general theory of 
unitary transformations it follows that the corresponding eigenfunction CIA) of fi will have 
the same eigenvalue. The effective Hamiltonian does therefore provide the means for a full 
description of the physical properties of the set of states of interest. Together with the unitary 
operator fi, it determines the energy eigenvalues and eigenfunctions and hence the intemal 
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dynamical processes (i.e. those processes involving only transitions between states within 
the set). In the special case of magnetic resonance, the states of interest are invariably a set 
of low-energy magnetic states having properties resembling those of free spins and then it 
is customary to refer to the effective Hamiltonian as a spin Hamiltonian. It should be noted 
that effective Hamiltonians are uniquely determined by the reduction process described by 
(2.5) only to within an arbitrary unitary transformation acting internally to the chosen set 
of states. This follows from the fact that if the unitary transformation operator U effects 
the reduction (2.5) then so does fioj if the unitary operator f i j  satisfies the condition 

[&, Pol = 0. (2.6) 

If the set of states of interest is sufficiently well separated in energy from other states 
then it is clear not only that the reduction (2.5) can be carried out but also that it is 
physically sensible to do so since there is then likely to be a wide range of interesting 
physical phenomena that is purely internal to such an isolated set. For a few-body system, 
such as a single paramagnetic ion, the range of energy within a low-lying set of magnetic 
states may only be a few millielectronvolts. Since in this case the excited states may have 
energies of electronvolts the above condition can be well met. Although such a condition 
of non-degeneracy is sufficient to validate the use of an effective Hamiltonian it is by no 
means a necessary one. In the many-body case of a large number of paramagnetic ions, 
for example, the energy range of the set of magnetic states greatly exceeds the excited 
state energies of single atoms. Real energy conserving transitions to these latter states 
could however only occur through the cooperative action of thousands of individual spins, 
corresponding to processes described only in very high orders of perturbation. Presumably 
therefore the processes that lead to such statistically unlikely concentrations of energy will 
have exceedingly small transition probability and so their neglect need have no serious 
physical consequences. 

Even in the case of a few-body system it is in fact unlikely that the reduction (2.5) can 
be carried out exactly. In any real situation the transformation operator fi and effective 
Hamiltonian will only be determined approximately. The commutator (2.5b). and hence 
the matrix elements of Ht connecting the states in the chosen set to states outside the set 
will not then be exactly zero, but only of a degree of smallness appropriate to a particuIar 
level of approximation. When this approximation procedure is carried out by perturbational 
methods i t  gives rise to an operator form of perturbation theory that is of interest in its own 
right quite apart from its importance in spin Hamiltonian theory. 

3. Perturbation theory 

For a perturbation treatment to be applicable it is necessary that the Hamiltonian fi can be 
expressed as a sum of an unperturbed part & and a relatively small perturbation ?. 

The basis states of the standard representation, referred to in section 2 as Iq), can naturally 
be identified with the orthonormal eigenfunctions of & if the set of unperturbed states of 
interest exists as a recognizable group, well separated in energy from all other states to 
which this set is connected by matrix elements of V .  The unperturbed set of states can 
conveniently be taken to be a degenerate one if all the terms in fi that lift the degeneracy 
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are included in 3. The projection operator for the set of unperturbed states lqm), where 
(Y = l-n, say, is 

bo = lV.)(%I. (3.2) 
o! 

The effective Hamiltonian f ie  is now obtained from a unitary transformation of as 
described in section 2, that is 

A 1 -  - fi-lfici (3.3a) 

where according to (2%) the unitary operator fi has the property 
- ^ *  

( I - P o ) H t P o =  P o H t ( l - b ~ ) = O  (3.36) 

so !hat 
I ^  * . .  

f i e  = HIP0 = PoHt. (3.3c) 

The transformation (3.3a) so to speak 'transforms away' those terms in 6 that give rise to 
matrix elements connecting unperturbed states in the set specified by (3.2) to states outside 
this set. 

A perturbational development of equations (3.3) can be made using the fact that any 
unitary operator can be expressed in exponential form (Roman 1975). Thus 

ci = expf  (3.44 

where f is some anti-Hermitian operator (ft = -f) that can be written as a power series 
in the perturbation V rather than the more restricted expression used in an otherwise similar 
formalism by Bates et al (1968). That is 

f = ?, +f* + f, + . . . I  (3.4b) 

The perturbation 3 will naturally contain all the terms of A that have matrix elements 
from unperturbed states within the set to those outside the set but it will doubtless have 
matrix elements internal to the set also. It makes for some algebraic simplification in the 
development that follows to separate out the terms that give matrix elemen& internal to the 
set by dividing A0 and V in the following way 

A = A o + 3 = E P o + ( l - b o ) A O ( l - P o ) + 3 0 + + l  (3 .44 

where 
. ̂^  CO = POVPO + (1 - brJP(1 - Po) 

3, = PoP(1 - Po) + (1 - P0)+PO 

and E is the unperturbed energy of the selected set of states. 
Applying (3.4a) to (3.3a) gives kt as 

1 4 = A + [A, il + $[A, ?I ,  f] + . . . . (3.5) 
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The various terms in the expansion (3.4b) can now be chosen in turn to satisfy 
condition (3.3b) up to whatever order of perturbation is required. Condition (3.36) is 
satisfied to first order in 0 by 

= [ V i ( l  - Po)/(& - E ) ]  = PoV(1 -Po) / (& - E )  - [(l - Po)/(& -E)]VPO (3.6) 

so that, up to second order in 3, & is given from (3.34 and (3.5) as 

* *  ~ ~ = ~ o P a + P o v P o + ~ [ 3 1 , i l ] P o  (3.7a) 

ri, =&Po + POVPO - Poop[(l - Po)/(& -&)13P0. 

or, equivalently 

(3.76) 

Satisfaction of (3.3b) up to second order is achieved by further having f2 in (3.4b) as 

( 3 . 8 ~ )  

A ^ I  

iz = [[VO. i l l ,  (1 - Pa)/(fio - 4 1  

so that He becomes, up to thii order of accuracy 

or 

.. ^ ^  

f i e  =&Po+ POVPO - PoV[(l - - &)]?PO 
+ PoV[(l - Po)/(& - E ) I V I ( l  - Po)/(& - &)]?PO 
- fPoVPoV[(I - Pa) / (~o-8 )~13Po  

- ^ ^  - 
- A A  

- f P o V [ ( l  - &/(Go -&)*lPovPo. ( 3 . 8 ~ )  

The similarity between (3 .8~)  above for fie and the third line of equation (36) in Bloch's 
expression (Bloch 1958) for a corresponding quantity d is close but not exact. f i e  and d 
have the same eigenvalues but, as a direct comparison of the expressions shows, only & 
is Hermitian in third and higher order. 

One immediate and very simple application of these results is to the special case of a 
set consisting of a single number, having unperturbed state 10) say. In this particular case, 
he = ElO)(Ol and it may be assumed that E is chosen so that PoVPO = (Ol~lO) lO)(Ol  = 0 
and then (3 .8~)  gives 

- ^ ^  

This is a standard result of non-degenerate perturbation theory, but here it appears as a 
special case of a formulation that applies equally well to degenerate and non-degenerate 
perturbations. 
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4. Transformation of associated operators 

The Hamiltonian is not the only operator of interest to an investigation of the properties of 
a physical system. Operators representing the internal symmetries of the system are also of 
considerable importance, as are those describing coupling to experimental probes (extemal 
electromagnetic fields, neutron beams etc). It is important therefore to recognise that a 
consistent use of effective Hamiltonians requires that these operators be subjected to the 
same transformation U Fat generates HI from H. For every operator Q there is therefore 
a transformed operator Q, given by 

&[ 2 O-lQO. (4.lQ) 

The effective operator Q, thaf acts purely internally to the set of states defined by I% is 
then 

(4.lb) 

Unlike I?t in (3.3a). &, above may have significant matrix elements connecting states in 
the set 

4.1. Symmetry operators and uniqueness 

In general QI in ( 4 . 1 ~ )  will not be the same as Q. Operators that represent symmetry 
operations are however a special case. A unitary operator S will be a member of the 
symmetry transformation group of the Hamiltonian Z? if it has the special property 

to states outside the set. 

or, equivalently 

[S. AI = 0. 

Since unitary transformations preserve algebfaic Fiationships such as (4.2) it follows that 
the same symmetry will be shown by Ut = U - I H U ,  but described by the operator SI, that 
is 

(4.3) 

It is generally regarded as intuitively obvious that, for symmetry operators, = i. The 
assumption of the invariance of symmetry operators is important in practical applications 
where spin Hamiltonians are usually constructed directly, in a phenomenological way, 
guided by symmetry considerations rather than the fonnal theory of (3.3). It can easily be 
shown that, for effective Hamiltonians given by the perturbation theory of section 3 at least, 
this assumption is justified when celtain very natural conditions are satisfied. Firstly it is 
natural to suppose that the division of I? in (3.1) is such that has the symmetry of I?. The 
unperturbed Hamiltonian f i ~  may have higher symmetry than f? but not less (no reasonable 
perturbation will increase the symmetry, only reduce it). It is also natural, indeed necessary, 
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to suppose that the set of unperturbed states deEned by PO forms a representation of the 
symmetry group common to fro, fi and (not necessarily an irreducible representation). 
These conditions imply therefore that for any symmetry operator S of the symmetry group 

(4.4) 
^ ^  

[ H .  SI = rHO. SI = [t, SI = [Po,  SI = 0. 

The unitary transformation operator fi in ( 3 . 3 ~ )  need only be a function of the operators 
occurring in (4.4) above, that is 

ir = &(Bo, P, $cl) (4.5) 

so that 

[ir, SI = 0 

and therefore 

3, = i r - l i l j  = i (4.6) 

showing that symmetry operators are indeed invariant. The symmetries of the effective 
Hamiltonian are therefore described by the same operators that describe the symmetries of 
H, that is 

* . .  [He ,  $1 = [ H e ,  SI = 0 (4.7) 

and the properties of (4.4) furthermore show that (4.7) will apply to each term separately 
in the perturbation expansion (3.8b) of He. 

The validity of (4.6) demonstrated above for one specific but generally applicable 
case shows that (4.6) can be assumed for effective Hamiltonians obtained by other more 
phenomenological means. By so doing the arbitrariness of the reduction process referred to 
in (2.6) is lessened but not entirely eliminated. If (4.6) is to be satisfied in all cases, then 
f i t  in (2.6) must also be invariant under the action of the operators of the symmetry group 
of A. For low symmetry and high spin quantum numbers this condition alone will not be 
sufficient to enforce the condition [Cl, He] = 0 that is necessaty to ensure the uniqueness of 
the effective Hamiltonian &. In general therefore uniqueness of f i e  demands the imposition 
of other conditions, such as the ‘simplest’ representation of the Zeeman terms in He. 

5. Rotational covariance and fictitious spins 

Because the reduction process (2.5) is independent of any particular representation, the 
effective Hamiltonians it produces will also be in a representation independent form, as in 
(3.8b). Expressions such as (3.8b) apply therefore in any coordinate system and so they 
give the effective Hamiltonian in a form invariant or rotationally covariant way that makes 
manifest the tensorial nature of the various parameters that occur in &. This can be seen to 
be generally true by noting that if A, fi, fit, f i e  and referred to one particular coordinate 
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system satisfy (2.1) then so do the corresponding operators 6'. l?, 6;. fi; and 
to a rotated coordinate system, where 

referred 

* I ^  6' = R H R - '  
* - -  i? = R U R - ~  

f i t  - i f i t , + - 1  

P = R P R - 1  

f i r  - jf ip,  

t -  

A ^ ^  

e -  

The unitary operator k describing the relationship between the coordinate systems is given 
explicitly in standard texts (e.g. Brink and Satchler (1968) p 20). 

Although it  is unlikely that fi in (3.1) will have the symmetry of the full rotation group 
it is quite possible that fi0 does. In this case the set of states defined by PO will form 
a representation of the rotation group with the result that @; = in (5.1). When, as is 
invariably the case, the set of states forms an irreducible representation, the Wigner-Eckart 
theorem (Brink and Satchler 1968, p 56) ensures that all the operators in fie in (2.1) can be 
expressed in terms of the 'real' spin or angular momentum operator associated with such 
states. 

Cases of the opposite kind, where pi # I% in (5.1). are commonly encountered when 
dealing with ions having an odd number of electrons (Kramers ions). If the different Kramers 
doublets that occur are well isolated it is possible to construct effective Hamiltonians for 
each doublet separately. Since only an external magnetic field B is capable of lifting the 
Kramers degeneracy, an effective Hamiltonian for a Kramers doublet will take the general 
form 

where I ~ I )  and l p ~ )  (here written 11) and 12) for simplicity) are orthonormal basis states for 
the doublet. They do not form a representation of the rotation group since, for example, 
kI 1)  cannot be expressed as a linear combination of I I )  and 12) alone. 

An operator of 'fictitious' spin s can be introduced by the substitutions 

3, = $ ( l I ) ( I l  - j2)(21) 

k = ;(11)(21+ 12)(1/) (5.3) 

5, = (1/2i)(11)(21- 12)(11) 

that allows (5.2) to be put into the form 

(5.4) 

where p~ is the Bohr magneton. 
It can be verified from (5.3) that the components of 'fictitious' spin satisfy the same 

commutation rules as the components of real spin and have the same eigenvalues within 
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the doublet states as real spin components do within states having spin quantum number 
S = 4. They also are reversed in sign under time reversal just like the components of real 
spin, since 11) and 12) are h e r s  conjugate states (i.e. 12) = $ 1  1) and 11) = 4 1 2 )  where 
6 is the time reversal operator). 

Despite these similarities, 3 is not a true vector since its components (5.3) do not form 
a representation of the rotation group if the set of states 11). 12) do not. The freedom that 
exists in choosing the basis states, referred to earlier in (2.6). can however be used to make 
the similarity of S to a true vector as close as possible. If (5.3) applies in one particular 
coordinate system with basis states [ I )  and 12) then the same relationships can be applied 
in any rotated system to define in terms of 11)' and [Z)', the chosen basis states for the 
rotated system. It is possible to choose to define 11)' and 12)' in terms of 11). 12) and the 
rotation operator k so as to ensure that 

where D ( R )  is the same matrix that describes the rotational transformation of the 
components of a true vector, such as the magnetic field B: 

The usual expression 'g tensor' for the set of coefficients gij in (5.4) can therefore be 
justified since, with the above definition of S, the si, referred to one coordinate system are 
related to the corresponding coefficients gij referred to another system in the standard way 
that defines a second-rank tensor. However, as pointed out by Abragam and Bleaney (1970, 
p 652), in practical applications (5.4) is usually used only as a vehicle for expressing the 
angular variation of the eigenvalues E of f i e ,  which are given as the roots of the quadratic 
equation 

(E-w) = gikgjkBiBj. 
i , j . k=x ,y ,z  

The cwfficients Gij. given from (5.6) as 

Gij = RikGjk 
P=x.y.z 

(5.6) 

(5.7) 

are therefore quantities of more direct practical relevance. Since in (5.6) ( E  - tu) is a scalar 
and Bi, Bj are components of a true vector it follows that the coefficients G,j do form a 
tensor, irrespective of the choice made for the matrix D ( R )  in (5.5). 
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