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Abstract. A peneral theory of effective Hamiltonians, or spin Hamiltonians, is presented
that is based upon the theory of unitary transformations. The general properties of effective
Hamiltonians are discussed and a representation independent form of perturbation theory is
given that allows effective Hamiltonians to be constructed in any particular case.

1. Introduction

In magnetism in general, and in magnetic resonance in particular, much use is made of
effective Hamiltonians, or spin Hamiltonians. Their efficacy in describing the perhaps
complicated energy level structure of a group or sub-set of quantum states in terms of
just a few parameters is well known. It is perhaps because spin Hamiltonian have such
a direct practical application in summarizing experimental data that they are usually used
in a somewhat intuitive way without reference to any clearly stated basis of fundamental
principle. Although quite satisfactory for most practical purposes, intuitive procedures
can sometimes lead to confusion and misunderstanding and for this reason alone it is
surprising that otherwise definitive texts, such as that by Abragam and Bleaney (1970),
do not give any very explicit account of a fundamental general theory underlying the use
of spin Hamiltonians.

A notable publication dealing with such a general theory is that of Stevens (1985).
Unfortunately this work makes use of a perturbation method of Bloch (1958) whose effect is
to produce effective Hamiltonians that, in third and higher order at least, are not Hermitian.
Soliverez (1969} has shown how the perturbation method of Bloch can be modified to
give Hermitian Hamiltonians, but nevertheless this seems an unnecessarily complicated
procedure on which to base a general theory of spin Hamiitonians. Here a general theory
will be developed that guarantees Hermiticity but is based upon more standard quantum
mechanics, namely the theory of unitary transformations.

2. General theory

Out of the whole set of quantum states that a quantum system might possess it is possible
that, under some conditions, some physical properties arise entirely from a particular sub-
set of these states. Such a condition will occur when only the states in the sub-set have
any appreciable probability of occupancy. Under such a circumstance it is natural to seek
to describe the sub-set of states separately from other states. This desirable objective is
achieved if a representation of the quantum states can be found in which the Hamiltonian of
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the physical system has no matrix elements connecting states within the sub-set of interest
to states outside the sub-set. Then the Hamiltonian matrix has a block diagonal form with
the sub-set of states of interest forming one block and all other states forming a second
block. This means that there must exist a projection operator P that divides the Hilbert
space of quantum states into two sub-spaces such that

HAH=PHP+(1-FHQI-PF) 2.1a)
or equivalently

[H, Pl=0. (2.1b)

The projection operator P can be expressed in terms of the orthonormal basis states
|} that define the sub-space of interest as

P=3 Iu) Vel @2)

The determination of the basis states in (2.2) is equivalent to finding the unitary
transformation operator [/ (Ut = U~") that establishes 2 one to one correspondence between

these states and the orthonormal basis states ¢} of some known standard representation.
That is, for all & in the set of interest

[¥e) = U @) 2.3)

so that  can be expressed as
P =UR0" (2.4)

where Py = Y o [ (.l is the projection operator for the sub-space defined by the basis
states of the standard representation that correspond according to (2.3) to the states in the
sub-space of physical interest.

The unitary transformation operator can be used to transform the Hamiltonian H into a
form A, that reduces into two parts with respect to the standard basis states |¢) in the same
way as H does in (2.1a) with respect to the states {1). That is

B=0"80=FHE+(- ﬁo)ﬁt(l - By (2.5a)

where the fact that H, has no matrix elements from the set of standard basis states |} tO
states outside the set can be given an algebraic expression as

(A, Py] =0. (2.5h)

H. = A8 in . 5a} is then the effective Hamn]toman for the set of states defined
by the projection operator P Any eigenfunction of A, |A) say, will only be a linear
combination of those standard basis states that belong to the set specified by £y and which
are presumably well known and of a refatively simple nature. From the general theory of
unitary transformations it follows that the corresponding eigenfunction J1A) of H will have
the same eigenvalue. The effective Hamiltonian does therefore provide the means for a full
description of the physical properties of the set of states of interest, Together with the unitary
operator U, it determines the energy eigenvalues and eigenfunctions and hence the internal
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dynamical processes (i.e. those processes involving only transitions between states within
the set). In the special case of magnetic resonance, the states of interest are invariably a set
of low-energy magnetic states having properties resembling those of free spins and then it
is customary to refer to the effective Hamiltonian as a spin Hamiltonian. It should be noted
that effective Hamiltonians are uniquely determined by the reduction process described by
(2.5} only to within an arbitrary unitary transformation acting internally to the chosen set
of states. This follows from the fact that if the unitary transformation operator U effects
the reduction (2.5) then so does [ U. if the unitary operator o 1 satisfies the condition

[0, Bl = 0. (2.6)

If the set of states of interest is sufficiently well separated in energy from other states
then it is clear not only that the reduction (2.3) can be carried out but also that it is
physically sensible to do so since there is then likely to be a wide range of interesting
physical phenomena that is purely internal to such an isolated set. For a few-body system,
such as a single paramagnetic ion, the range of energy within a low-lying set of magnetic
states may only be a few millielectronvolts. Since in this case the excited states may have
energies of electronvolts the above condition can be well met. Although such a condition
of non-degeneracy is sufficient to validate the use of an effective Hamiltonian it is by no
means a necessary one. In the many-body case of a large number of paramagnetic ions,
for example, the energy range of the set of magnetic states greatly exceeds the excited
state energies of single atoms. Real energy conserving transitions to these latter states
could however only occur through the cooperative action of thousands of individual spins,
corresponding to processes described only in very high orders of perturbation. Presumably
therefore the processes that lead to such statistically unlikely concentrations of energy will
have exceedingly small transition probability and so their neglect need have no serious
physical consequences.

Even in the case of a few-body system it is in fact unlikely that the reduction (2.5) can
be carried out exactly. In any real situation the transformation operator U and effective
Hamiltonian A, will only be determined approximately. The commutator (2.35), and hence
the matrix elements of H, connecting the states in the chosen set to states outside the set
will not then be exactly zero, but only of a degree of smallness appropriate to a particular
level of approximation. When this approximation procedure is carried out by perturbationat
methods it gives rise to an operator form of perturbation theory that is of interest in its own
right quite apart from its importance in spin Hamiltonian theory.

3. Perturbation theory

For a perturbation treatment to be applicable it is necessary that the Hamiltonian H can be
expressed as & sum of an unperturbed part Hpand a relatively small perturbation V.

A=Hy+V. 3.1

The basis states of the standard representation, referred to in section 2 as |¢), can naturally
be identified with the orthonormal eigenfunctions of Hy if the set of unperturbed states of
interest exists as a recognizable group, well separated in energy from all other states to
which this set is connected by matrix elements of V. The unperturbed set of states can
conveniently be taken to be a degenerate one if all the terms in A that lift the degeneracy
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are inciuded in V. The projection operator for the set of unperturbed states lg,), where
o = l-n, say, is

By =" lga) (el (3.2)

The effective Hamiltonian H, is now obtained from a unitary transformation of H as
described in section 2, that is

H =0""A0 (3.32)

where according to (2.5b) the unitary operator U has the property

(1~ P)B, Py = Pl — Py =0 (3.3b)
so that
A, = APy = PyA,. (3.3¢)

The transformation (3.3a) so to speak ‘transforms away’ those terms in H that give rise to

matrix elements connecting unperturbed states in the set specified by (3.2) to states outside
this set.

A perturbational development of equations (3.3) can be made using the fact that any
unitary operator can be expressed in exponential form (Roman 1975). Thus

U=expT (3.40)

where T is some anti-Hermitian operator (T* = —T) that can be written as a power series
in the perturbation V rather than the more restricted expression used in an otherwise similar
formalism by Bates et al (1968). That is

T=Tv+h+T+.... (3.45)

The perturbation V will naturally contain all the terms of A that have matrix elements
from unperturbed states within the set to those outside the set but it will doubtless have
matrix elements internal to the set also. It makes for some algebraic simplification in the
development that follows to separate out the terms that give matrix elements internal to the
set by dividing Hy and V in the following way

H=Hy+V=P+ (1 —P)Hy(1 — B+ Vo + ¥, (3.4c)
where
Vo= PV P+ (1 — BV (1 — By)
=PV - B+ (- BV A

and ¢ is the unperturbed energy of the selected set of states.
Applying (3.4a) to (3.34a) gives H, as

Hg=ﬁ+[ﬁ.f]+%uﬁ,f],f1+.... (3.5)
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The various terms in the expansion (3.4b) can now be chosen in turn to satisfy

condition (3.3b) up to whatever order of perturbation is required. Condition (3.3b) is
satisfied to first order in V by

fi = 19100~ B/ (o - )] = BV (1 = Po)f(Fo — &) = [(1 = P /(o — IV Bo (36)
so that, up to second order in v, I?Te is given from (3.3¢) and (3.5) as

A, = BoPo+ PV Ry + LV, T (3.7a)
or, equivalently

He = ePy+ BV By — ByVI(1 — Bo)/(Hy — NV By, (3.76)

Satisfaction of (3.35) up to second order is achieved by further having 'f'z in (3.4b) as

To = [Vo. T, (1 = o)/ (Fo — ©)] (3.80)
so that H. becomes, up to third order of accuracy

A = BB+ PV By + LV, )80 + 11V, Ta) By (3.80)

or

~ A

H.=ely+ BV By — PoVI(1 = Po)/(Ho — )]V Ey
+ PV — o}/ (Ho —~ &)IVI(L ~ Po)/(Ho — )}V Py
~ sV B VL — B)/(Fo — 21V By
— 3PVI0 - B)j(Ho — 1BV B (3.8¢)

The similarity between (3.8¢) above for H, and the third line of equation (36) iq Bloch’s
expression (Bloch 1958) for a corresponding quantity A is close but not exact. H, and A
have the same eigenvalues but, as a direct comparison of the expressions shows, only H,
is Hermitian in third and higher order.

One immediate and very simple application of these results is to the special case of a
set consisting of a single number, having unperturbed state |0) say. In this particular case,
H, = E[0){0] and it may be assumed that & is chosen so that oV = (0| V{0}OHO] =
and then (3.8¢) gives

= OV @Ivio) {OIVln (nlV im)(m|V 10)
E=t-) -9 *X @-oem-n
u#ﬂ

This is a standard result of non-degenerate perturbation theory, but here it appears as a

special case of a formulation that applies equally well to degenerate and non-degenerate
perturbations.
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4. Transformation of associated operators

The Hamiltonian is not the only operator of interest to an investigation of the properties of
a physical system. Operators representing the intemnal symmetries of the system are also of
considerable importance, as are those describing coupling to experimental probes (external
electromagnetic fields, neutron beams etc). It is important therefore to recognise that a
consistent use of effective Hamiltonians requires that these operators be subjected to the
same transformation & that generates B, from H. For every operator 0O there is therefore
a transformed operator Q. given by

Q=0"00. : (@.1a)

The effective operator O, that acts purely internally to the set of states defined by Pois
then

Ge = B0 Py. (4.1b)

Unlike };’t in (3.3a), Qt above may have significant matrix elements connecting states in
the set Py to states outside the set.

4.1, Symmetry operators and unigueness

In general ét in (4.1a) will not be the same as g. Operatcirs that represent symmetry
operations are however a special case. A unitary operator S will be a member of the
symmetry transformation group of the Hamiltonian H if it has the special property

~

S8 "'=H

or, equivalently

i3, A1=0. (4.2)
Since unitary transformations preserve algebraic relationships such as (4.2} it follows that
the same symmetry will be shown by H, = 0-'H0, but described by the operator §,, that
is

8 A =0
where

§=0780. 4.3)

It is generally regarded as intuitively obvious that, for symmetry operators, § = 8. The
assumption of the invariance of symmetry operators is important in practical applications
where spin Hamiltonians are usually constructed directly, in a phenomenological way,
guided by symmetry considerations rather than the formal theory of (3.3). It can easily be
shown that, for effective Hamiltonians given by the perturbation theory of section 3 at least,
this assumption is justified when certain very natural conditions are satisfied. Firstly it is
natural to suppose that the division of Hin (3.1} is such that ﬁg has the symmetry of H. The
unperturbed Hamiltonian Hy may have higher symmetry than H but not less {nc reasonable
perturbation will increase the symmetry, only reduce it). It is also natural, indeed necessary,
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to suppose that the set of unperturbed states defined by P, forms a representation of the
symmetry group common (o Ho, H and V (not necessarily an 1rreduc1ble representation).
These conditions imply therefore that for any symmetry operator § of the symmetry group

~

[A.81=1H,81=(V,81=[B,81=0. (4.4)

The unitary transformation operator {7 in (3.3a) need only be a function of the operators
occurring in (4.4) above, that is

O =0, V, Py (4.5)
so that

[0,81=0
and therefore

kS 180 (4.6)

showing that symmetry operators are indeed invarant. The symmetries of the effective
Hamiltonian are therefore described by the same operators that describe the symmetries of
H, that is

[H., 8] = [Ae, §1=0 (4.7

and the properties of (4.4) furthermore show that (4.7) will apply to each term separately
in the perturbation expansion (3.86) of H..

The validity of (4.6) demonstrated above for omne specific but generally applicable
case shows that (4.6) can be assumed for effective Hamiltonians obtained by other more
" phenomenoclogical means. By so doing the arbitrariness of the reduction process referred to
in (2.6) is lessened but not entirely eliminated. If (4.6) is to be satisfied in all cases, then
0, in (2.6) must also be invariant under the action of the operators of the symmetry group
of H. For low symmetry and high spin quantum numbers this condition alone will not be
sufficient to enforce the condition {U;, He] = 0 that is necessary to ensure the uniqueness of
the effective Hamiltonian H.. In general therefore uniqueness of A, demands the imposition
of other conditions, such as the ‘simplest’ representation of the Zeeman terms in A.

5. Rotational covariance and fictitious spins

Because the reduction process (2.5) is independent of any particular representation, the
effective Hamiltonians it produces will also be in a representation independent form, as in
(3.8b). Expressions such as (3.8b) apply therefore in any coordinate system and so they
give the effective Hamiltonian in a form invariant or rotationally covariant way that makes
manifest the tensorial nature of the various parameters that occur in H_,. This can be seen to
be generally true by noting that if A,U, B, H, and Py referred to one particular coordinate
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system satisfy (2.1) then so do the corresponding operators a.o, I-.?:' , I:Ié and 155 referred
to a rotated coordinate system, where

A =RAR
0= ROR™
A = RER™ (5.1)
= RPR™!
H = RAR

The unitary operator R describing the relationship between the coordinate systems is given
explicitly in standard texts (e.g. Brmk and Satchler (1968} p 20).

Although it is unl1kely that A in (3.1) will have the symmetry of the full rotation group
it is quite possible that Hy does. In this case the set of states defined by £, will form
a representation of the rotation group with the result that Po = Py in (5.1). When, as is
invariably the case, the set of states forms an irreducible representation, the Wigner-Eckart
theorem (Brink and Satchler 1968, p 56) ensures that all the operators in H; in (2.1) can be
expressed in terms of the ‘real’ spin or angular momenturn operator associated with such
states.

Cases of the opposite kind, where 155 # Py in (5.1), are commonly encountered when
dealing with ions having an odd number of electrons (Kramers ions). If the different Kramers
doublets that occur are well isolated it is possible to construct effective Hamiltonians for
each doublet separately. Since only an external magnetic field B is capable of lifting the

Kramers degeneracy, an effective Hamiltonian for a Kramers doublet will take the general
form

~

He=why+ 3 Bla:(INI+12)2D + 5D+ 12X + (12— 124D (52)

i=x.y.z

where {@;} and |g;) (here written |1} and |2} for simplicity) are orthonormal basis states for
the doublet. They do not form a representation of the rotation group since, for example,
R|1) cannot be expressed as a linear combination of [1) and |2} alone.

An operator of ‘fictitious’ spin S can be introduced by the substitutions

S = una -2
Lanel+ 2y (5.3)

(172011420 — 12)(1])

ll

S

that allows (5.2) to be put into the form

Ho=wh+ 3 g,usBS (5.4)

i j=x.),2

where pp is the Bohr magneton.
It can be verified from (5.3) that the components of ‘fictitious’ spin satisfy the same
commutation rules as the components of real spin and have the same eigenvalues within
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the doublet states as real spin components do within states having spin quanturn number
S= % They also are reversed in sign under time reversal just like the components of real
spin, since {1} and |2) are Kramers conjugate states (i.e. |2} = f?ll) and [1} = —5{2} where
$ is the time reversal 'operator)u.
Despite these similarities, S is not a true vector since its components (5.3) do not form
a representation of the rotation group if the set of states |1}, |2) do not. The freedom that
exists in choosing the basis states, referred to earlier in (2.6), can however be used to make
the similarity of § to a true vector as close as possible. If (5.3) applies in one particular
coordinate system with basis states [1) and |2) then the same relationships can be applied
in any rotated system to define & in terms of |1)’ and |2)’, the chosen basis states for the
rotated system. It is possible to choose to define |1) and |2)’ in terms of |1}, |2) and the
rotation operator R so as to ensure that
RER™ = ) Dy(R)S] (5.5)

J=x, vz

where D(R) is the same matrix that describes the rotational transformation of the
components of a true vector, such as the magnetic field B:

Bi= Y DyRB.

Jj=x.y.z

The usual expression ‘g tensor’ for the set of coefficients g; in (5.4) can therefore be
justified since, with the above definition of S, the g:; 1eferred to one coordinate system are
related to the corresponding coefficients g/; referred to another system in the standard way
that defines a second-rank tensor. However, as pointed out by Abragam and Bleaney (1970,
p 652), in practical applications (5.4) is usually used only as a vehicle for expressing the
angular variation of the eigenvalues E of H., which are given as the roots of the quadratic
equation

(E—wi= )" gugnBiB. (5.6)

i jk=x,y,2

The coefficients G;;, given from (5.6) as

Gy= Y gugi (5.7)

k=x.y.z
are therefore quantities of more direct practical relevance. Since in (5.6) (E —w) is a scalar

and B;, B; are components of a true vector it follows that the coefficients G;; do form a
tensor, irrespective of the choice made for the matrix D(R) in (5.5).
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